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First-Passage Times in a Critical Stochastic Model 

P . - M .  Binder  t 

Received January 10, 1992 

Average first-passage times for a single-variable stochastic model with a critical 
fixed point at the origin are computed by exact enumeration. The numerical 
measurements show excellent agreement with analytical results. The scaling 
function approaches the predicted asymptotic dependence. 
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This short communication addresses the relation (l) between microscopic 
stochastic dynamics and macroscopic equations; in particular, it is a 
numerical study of the times scales for which a simple stochastic model is 
no longer properly described by its governing macroscopic equation. The 
study is followed by comparison with analytical predictions for the exact 
value of the first-passage time and the asymptotic behavior of the scaling 
function for the first-passage time. 

In particular, ! consider a family of models also studied by Privman 
et al.(2): particles are allowed to exist at integer sites (n =0, 1, 2,..., N), and 
have transition probabilities for microscopic time steps A t  ~ 1 / N  2, 

p (n  --* n -- 1) = (1 -- y ) p  + yp2 
(1) 

p ( n - - * n +  1)= ( l - y )  p(1--p) 

Otherwise they do not move from position n; the fluctuating density 
variable is p =- (n /N) .  

These transition probabilities approximate the macroscopic ( N ~  oo) 
evolution equation 

dt~ 
dt 
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which has a critical fixed point at the origin, and should show slower-than- 
exponential relaxation for the average density t~. This equation is of interest 
in epidemiology,/3'4) where the "particle" position represents the number of 
sick individuals, and may also be relevant to the understanding of self- 
organized criticality. (s) 

Starting with particles placed randomly and uniformly over all allowed 
sites, the expectation value T of the first-passage time to n = 0 (after which 
particles remain at the origin forever) determines a characteristic time for 
which the detailed microscopic process starts deviating significantly from 
the macroscopic, average process. 

While it is often difficult to derive simple closed-form results for this 
type of model and quantity, an analytical expression (6) has been obtained 
for T(y  = 1). The result, in macroscopic time steps (NZAt), is given by 

N ~ N + l - n  
T= N +  1 n 2 (2) 

n - - 1  

which can be expanded to yield 

T = - - ~ N - ~ - - - ~ l n N - ( 7 +  i )+(9  (3) 

where 7 is Euler's constant. It appears (6) that numerical confirmation of 
Eqs. (2) and (3) is beyond the capability of present-day computers using 
traditional Monte Carlo simulations. The problem is this case seems to be 
the exponential distribution of the arrival probabilities. The first purpose of 
this communication is to confirm numerically these two equations. 

Here the problem is approached with the exact enumeriation techni- 
que, (7) originally developed for random walks, but which has also been 
applied recently to several lattice-gas cellular automata models. (8'9) This 
method consists in evolving particle probabilities according to the respec- 
tive transition probabilities. Denoting by c(n, t) the probability of a particle 
being at position n and microscopic time step t, the evolution equation for 
probabilities corresponding to Eq. (1) is 

c(n, t + 1) = c(n + 1, t) p(n + 1 --* n) + c(n - 1, t) p(n - 1 --* n) 

+ c(n, t) p(n --* n) (4) 

Equation (4) is exact for the numerical simulation; no additional averaging 
over disorder configurations is necessary, unlike in previous applications of 
the technique. Furthermore, this equation is not a disguised finite-difference 
form of the macroscopic evolution equation. 
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Defining r to be the (probability) flux of particles reaching the origin 
at time t, 

v ( t )=  c(1, t -  1) p(1 ~ 0 )  (5) 

one obtains 

oo 
T= Z t~(t) (6) 

t = 0  

as the quantity of interest. 
The case y = 1 was studied in more detail, since Eqs. (2) and (3) are 

available for comparison. To make a connection between Eqs. (2) and (3) 
and Eq. (6), one needs an initially uniform distribution of particles between 
n = 0  and n=N. 

Equations (4)-(6) have been iterated for lattice sizes going from 6 to 
96 in factors of two. Double-precision arithmetic has been used, and 
simulations have been carried until the changes in T and in the sum of 
particle fluxes reaching to origin become smaller than machine precision. 

Figure 1 is a plot of ln(z) against t for N =  96, with t given in units 
of 105 time steps. The cumulative sum of probabilities at n = 0  and T 
stopped changing after 23.8 million microscopic time steps, shortly before 
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Fig. l. Semilogarithmic plot of passage probability versus time (in units of 105 microscopic 
time steps) for y = 1, N = 96. The straight line indicates the exponentially decaying probability 
of arrivals to the origin. 
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the end of the simulation. It is clear that, after a maximum flux of particles 
at around 800,000 time steps, the flux starts decaying exponentially with 
time. 

Table I contains results for five lattice sizes, differing successively by 
factors of two. The average first-passage time is given to six decimal places 
for both theory [Eq. (2)] and simulations [Eq.(6)] .  It has been 
normalized by N, so that entries are of the same order of magnitude. 
Several points are worth noting. The relative error between simulations and 
theory diminishes with increasing lattice size, from -0.0034 to - 7  x 10 7 
for the values examined. The simulation value is consistently below theory, 
which could be explained by the fact that not all particles have arrived at 
the origin a finite time, and therefore the numerical estimate is always low. 
(See column 5 of Table I.) The times (both macroscopic and microscopic) 
required for convergence to machine precision grow with N: column 4 of 
Table I refers to the macroscopic times, N2At. Therefore, even with exact 
enumeration it is difficult to treat large lattices: microscopic times increase 
roughly by a factor of eight for each size doubling; the estimate for 
convergence for N =  192 is about 180 million time steps. 

Privman et al. (2) have proposed z=-N(1-y) as the relevant scaling 
variable for the scaling function defined by T~ Nf~(z). The second purpose 
of this communication is to study the asymptotic behavior of the scaling 
function for large z. 

Equation (3) suggests that TIN should be of the form 
T/N~fg(z)+bw, with w=(lnN)/(N+l). For y r  Eq.(4) has been 
iterated until at most 1/1000 of all particles have not reached the origin. 
Values of y and N were picked so that y ~> 0.8 and N ~< 400. For each value 

Table I. Latt ice Size, Analyt ical  Value for First-Passage Time (from Eq. (2) ] ,  
Exact Enumerat ion Value, Number of Macroscopic Time Steps Required for 

Convergence, and Fract ion of Particles Not Yet at the Orig in after 
Convergence Time 

~/U 

N F r o m  Eq. (2) F r o m  Eq. (6) t p 

6 1.141388 1.137420 222 < 7  x 10 -4 

12 1.326268 1.325734 403 < 5  • 10 5 
24 1.453083 1.453016 745 < 3  x 10 5 

48 1.533320 1.533311 1396 < 2  x 10 7 
96 1.581512 1.581511 2582 < 2 •  10 8 
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Fig. 2. 
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Logarithmic plot (base 2) of the scaling function vs. z. The solid line has slope - 1/2, 
corresponding to the predicted N(z) ~ 1/ ,~  dependence. 

of z, the scaling function has been estimated by extrapolating T I N  to w ~ 0. 
A logarithmic plot of the extrapolated scaling function versus z is shown in 
Fig. 2. For  large enough z, this function seems to approach an asymptote 

~ 1/,,/-~, in agreement with the predictions of Privman et al. (2] 

In summary,  this communication reports a numerical study of a family 
of stochastic models governed by a macroscopic equation with a critical 
fixed point. Exact enumeration results confirm the exponential nature of 
particle arrivals to the origin, an analytical result for first-passage times, 
and the asymptotic form of the scaling function for the relaxation time in 
these models. 
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